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The work of Barenblatt [ 1 ] deals with certain problems about non- 
steady one-dimensional filtration of liquid in a porous medium and about 

fluid motion in a boundary layer, which can be obtained from correspond- 
ing similarity problems by passage to a limit. Because of this, these 
motions are called limiting self-similar motions. 

Considered below are limiting self-similar motions of an ideal, non- 

heat-conducting, perfect gas in cases of Cauchy’s problem for the equa- 
tions of one-dimensional, non-steady motion with plane waves (the one- 

dimensional similarity problem of Cauchy allows the above mentioned 
limiting transition only in the case of motion with plane waves) and the 
problem of a symmetrical piston as it displaces a gas. 

The existence of a solution for the system of equations for one- 
dimensional motions of gas with plane waves which have the form of limit- 
ing, similarity solutions, was indicated by Staniukovich [ 2 1 although 
he did not give an actual construction of a solution of a concrete 
problem. Cauchy’s similarity problem for one-dimensional non-steady 

motions of gas was considered by us In Ref. [ 7 I, where it was establish- 
ed that this problem does not always have a sollition. 

In the present work, in the investigation of limiting similarity 
Cauchy problems, we shall prove that the same phenomenon occurs here also, 
and that more than one solution exists for certain conditions of the 
considered problem. 

III Ref. [7 ] we studied the self-similar motions of a gas displaced 
by a symmetrical piston, considered previously by Sedov [ 3, 4 1 , 
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Krsshennikova 15 1 and ChernyS 16 1 established that this problen 

also does not always have a solution. In the present investigation of 
limiting similarity piston problems, we shall establfsh that thfs problem 
always has a single-valued solution, which was to be expected on the basis 
of the results of Ref. [ 7 1. 

III this work we make only a qualitative investigation concerning the 
principles of the presented problems, and no numerical results of solu- 
tions are given, although they are easily obtainable when necessary. 

1. Gwchy” s problem. 

(1) Let us consider the following problem of Cauchy. 

a---P 

p@, O)= AP, p(x, 0) = ZW, u(5, 0) = q/$x 2 (r>OI (1.2) 

p (2, 0) = LA (- ~)a, p (2, O>= NB(-CC)@, u(z, 0) = MI -/~(-~)a? 

(z<(J) (1.3) 

The solution of this problem is self-similar and has the following 
form f3, 4, 7 1 

and the functions V, R, P= RZ/y are determined by the ordinary differentia 
equations, 

(1.6) 

dZ 
84 

~z~v-l)+{y~-l)v](v-g)~-(y-l~v(v- If(v-qP)-l2~v-~)+~(Y-~)l~ 
(V - q) IV tv - 1) (V-d + (x - VI 21 

dlnA 1 cv - g)2 - 2 - __ - 
dV - g V (V - 1) (V - q) + (x - V) 2 

(1.7) 

V-qdinR v(V-l)(v-g)+(~-V)~ 
qdm= 2 - (V - q)Z + (P-t 1) v (l-8) 

4=2/P---(~--p)], x=-q//r (l-9) 
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Let us replace x by R + a a everywhere and let p = a, A = p. @x)-a, 

B = p,,(aa)+, aa = bp, v = (I/a) vl, Y = (I/aa)Pl, R = R, 

and pass to the limit for a + w . Equations (1.2) will then yield 

p (2, 0) = pbe~~~, p (2, 0) = poe”‘b, U (z, 0) = M J/z$E’ (1.10) 

E,+ations (1.3) need not be considered, as the region determined by them 

goes to the left, into infinity. Equations (1.4) and (1.5) will trans- 

form as follows: (indices omitted) 

24 (3, t) = ; I/ (h), p(z, t) = p,; exlb P(h), p (5, t) = poexfb R (h] (1.11) 

(1.12) 

The differential equations (1.6), (1.7), (1.8), will transform into 
the following: 

( 
Y---l 

dZ Z2-Y -n z+(y--1)v(v+n)-2((V+n)~ 
> 

d7 = 
(V+R)[CLZ-v(y+~)1 

(1.13) 

din?, 2 - (V +n)* 
TF-= 

n [ ;z - v (V + n)] (1.14) 

1’ + n dlnR +yV+n) 2 
z-(v+n)” - 1-R v ( ) 

(1.15) 
ndlnh=-- 

where n = 2b/(b - a). 

(2) For the consideration of discontinuous solutions we shall need 

the conditions at a shock wave, in non-di~nsional form; these are given 

by equations (2.7) and those preceeding it in Chapter IV of Ref. t4 1 

from these formulas at the limit a -, 00 we will obtain 

Relations (2.1) transform the points of the upper half-plane of the 

plane V, Z in the following way (points Z < 0 do not have any physical 
meaning). The points of the parabola (Fig. 1) 

2 = (V + $2 (2.2) 

transform into themselves; the points on the axis z = 0 transform into 



420 S.S. Grigorion 

points of the parabola 

2 = 3 (V + ny (2.3) 

The points of the region between the axis 2 = 0 and the parabola (2.2) 
transform into points of the region between parabolas (2.2) and (2.3). 
Here the first points represent the conditions of the gas in front of the 
shock wave, the second points represent the conditions behind it. It is 
impossible to be in the region bounded on the bottom by parabola (2.3). 

Fig. 1. 

(3) 'lhe conclusion that the required limiting solutions have the form 
(1.11) and (1.12) can be also reached by the following method. We are 
looking for a solution to Cauchy's problem for the system (1.1) and the 
initial conditions: 

P(S, 0) = pOerja, p(x, 0) = p,,e+lb 

[a (2, 0) = Uexic (3.1) 

The solution depends upon the 

POD PO’ U, a, b, c, y from which 
combinations can be made up: 

,- 

It will have the form f4 1 

system of determining parameters, x, t, 
the following independent non-dimensional 

let us make the transformation x = x' + x0. 'Ihe system (1.1) is in- 
variant with respect to this transformation and the initial conditions 
are changed as follows 

p (d, 0) = po’ex’@, p (d, 0) = pD’e+*@, u (d, 0) = U’@‘@ (3.3) 

where pot = poex*~a, po’ = pOeXO/b, u’ = &‘&IC , i.e. they also keep their 
form. 

In this manner, Cauchy's problem (l.l), (3.3) differs from the similar 
problem (l.l), (3.1) only in the values of po, p. and U. Hence, the solu- 
tion of problem (l.l), (3.3) will be obtained from the solution of problem 
fl.l), (3.1) i.e. from (3.2) if, in the latter, we replace 
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po, p. ad V by po’, po’, U’ and x by x’ i.e. 

Alt for x’ = x - x0, (3.4) has to coincide with (3.2); the relations 

obtained by equating the right-hand sides of (3.4) and (3.2) for x’ = 

x - x0 are identical with respect to x0. Putting x0 = x in these identi- 
ties and requiring that a, b and c be related by 

1 b-a 

mm will obtain 
----y&=0 
c (3.5) 

ruad analogous relations for R and Y. 

In this manner, we can see that by satisfying the conditions (3.5) the 

solution of Cauchy’s problem (l.l), (3.1) has the aself-similarn form 

(3.7) i.e. it is determined by ordinary differential equations. Obvious 

transformations will reduce these equations to the system (1.13), (1.14) 

and (1.15). 

(4) According to the theory of Kovalevskaya, the problem (1.1)) (1.10) 

has a unique analytic solution in the vicinity of any finite point of the 

axis t = 0. Therefore system (1.13), (1.14) and (1.15) near h = 0 has a 

unique analytical solution in terms of X which is determined by the 
initial conditions 

v(O)==-P(O)=o,R(O)=1, 

lbus we have the following expansions 

V=Mh+ . . . . R=l +..., P=kz+..., 

from which it follows that the required integral curve of equation (1.13) 
near the point V = Z = 0 has the following representation 

2 = (r/M2) V2+. . . for M#O, 2=--V+... for M = 0. 

The last equations show that on the plane V, 2, the origin of coordi- 
nates is also the nodal point of the integral curves of equation (1.13), 
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where the different curves of this nodal point correspond to the various 
distributions of initial velocities. To solve Cauchy’s problem means to 
complete all the integral curves, issuing from the origin of the coordi- 
nates, up to the points where X = m or to paints located on the straight 
line V= -n, which corresponds to the limit of the region occupied by the 
moving gas (piston, vacuum). With this, the parameter A has to vary along 
the integral curves monotonically. On the parabola (2.2) X reaches a 
stationary value, therefore a continuous transition across it along the 
integral curves is inadmissible f 4, 7 I . 

Equations (1.131, (1.141 and (1.15) contain only one parameter II, 
therefore the study of the class of Cuuchy’s problems encountered here is 
limited to the study of the field of integral curves of equation (1.13) 
and the distribution of h snd R along them for all possible values of n. 

Fig. 2, 

The field of integral curves for n < 0 is represented in Fig. 2, Arrows 
on the integral curves represent the direction of increase of the para- 
meter X. The dotted curves are the parabolas (2.2>, (2.3). At point A 
having the coordinates f/’ = $/(r - n), 2 = [rn/(r - a)]“, we have a 

saddle point. 

W&en moving along the separatrix to point A we have asymptotically 
ZI. 

Ii = h, cxy c ;v - +$ C=l 
a--2y------ y - II 

zts Y-!-n a---y - 
Y-B 

Q is the tangent of the angle of inclination of the separatrix at the 
point A, with Q # Zyn/(y - n), a + y(y + n)/(y - n>. Therefore X at point 
A is finite and a transition can be made through point A by the integral 
curves (separatrices). With this, X at point A will vary monotonically. 
With y < 3 and 1 VI -W 00 we will have 

Z=a,~~13-y+ . . . . h5clexy(V/n)+... (4-i) 

where uI and cl. are ewstsnts. Ml this results in the following. 

For integral curves emanating from the origin to the left of the sepa- 
ratrix that enters saddle A, the solution of Cauchy’s problem is continuous 
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and determined for all values of x snd t > 0. For the remaining group of 

integral curves, the solution can be constructed in the following manner. 

From these curves the mapping point makes a jump onto the separatrix that 

goes through the saddle A and the point Z = 0, V m -n, and continuing 

along this separatrix goes through A and thence to infinity at V + - 00. 

‘Ihe solution to Cauchy’s problem is discontinuous and the motion takes 

place with one shock wave. 

For the proof of these statements let us note the following. As a part 

of the separatrix, (through the points A and Z = 0, V = -n) is located 

between parabolas (2.2) and (2.3) and crosses the second parabola at 

Z > 0, then the image of this piece obtained by means of mapping (2.1) 

appears as some continuous curve without self-intersection that lies bot- 

ween parabola (2.2) and the axis Z a 0, and connects point A with some 
point of the Z - 0 axis for which V<- n. We shall show that this image 

is contained wholly in the region bounded by the segment Z = 0, 

o< v<- n, a section of the separatrix C&I, =d the section of the para- 

bola (2.2) that joins point A and Z t 0, V = - n. The image of the 

straight line V = VA - h2/(y - n) according to (2.1) is a parabola, that 

goes through the points A and Z= 0, V= - n. It is easy to show that the 

portion of this parabola on the interval VA < V < - II is located above 

the part of the separatrix that connects the points A and Z = 0, V= - n. 

Therefore the image of this piece is located to the right of the vertical 

line V= V,, which proves our previous statement. Thus, this image crosses 

every integral curve that emanates from point 0 to the left of the sepa- 

ratrix 04, and does not cross any other curve emanating from point 0. 

‘Ihis proves the existence of a solution to Cauchy’s problem. 

For the proof of uniqueness we may note (and it can be easily shown) 

that through the points A and Z= 0, V= - n we can draw two parabolas 

that have a vertical axis and are tangent from opposite sides to the 

piece of the separatrix which connects the two points, so that this piece 

is contained between the parabolas. wit, as can be proven, the images of 

those parabolas are also parabolas with a vertical axis, and they cross 
the axis Z = 0 to the right of V = VA. Between these images the image of 

the piece of the separatrix is included. Therefore, this image, which at 

least near the point A is a monotonically descending curve with a negative 
slope, will intersect every integral curve only once, as these curves in 

the considered region have a positive slope. It seems unrealistic to 

suppose that in going away from point A this slope might become so small 

that some integral curves muld be intersected more than once, so that 

uniqueness of solution of Cauchy’s problem would not exist for some 
values of M. In fact, this image is contained in the narrow strip between 
the two parabolas, the slope of which is negative, and it is hard to 

assume that the curvature of the image can change so drastically as to 
allow the possibility of more than one solution. A rigorous proof for 
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this is apparently impossible. 

The uniqueness of the solution for Cauchy’s problem could be disrupted 
if we could make a juanp from integral curves emanating from the point 0 
onto curves going to the point Y = - n, Z = m, at which point we would 
have P - 0 (empty space). when a jump is made from a certain selected 
curve onto a certain curve as just indicated, we will reach the point 
If t- n, z- 00 with a ccmpfetely determined value h = X*. A jump cm be 

made from a given curve onto different curves going to V = _L n, Z = a, 

obtaining different values of X*. Solutions corresponding to such dis- 
continuous integral curves describe motion in which a vaculnn is formed. 
‘lhe motion of the boundary is determined by the equation X = X*, i.e. 

From the ssyrqtotic formulas 

G-3) 

which are valid in the vicinity of V +e - n, Z = (ID, it follows that the 
pressure on the boundary of the created vacuun is different from 0, i.e. 
a cavity is formed because the gas is displaced by a piston moving from 
infinity, according to the law (4.2). Therefore, the above solution 
corresponds to the motions of the gas, which are due to the initial non- 
equilibrium distributions (1.10) and the displacing action of the piston. 
‘lhe above mentioned possibility of making a juap from a given curve 
emanating from the origin of the coordinates onto various curves going 
to the point V = - n, Z = 00, obtaining in this msnner different values 
for X*, corresponds to motions with identical initial states, but with 
different motions of the piston (4.2). 

From the above statements it follows that motion without a piston, 
i.e. Cauchy’s problem, exists corresponding either to continuous integral 
curves, mentioned above, or discontinuous curves canposed of parts of 
integral curves emanating from the origin of the coordinates to the right 
of the separatrix and a part of the other separatrix. It can be shown 
that the above discussions are valid for n < 0 for all values of y > 1. 
Therefore the solution of Cauchy’s problem for the case n < 0 exists. It 
is unique and determined for all values of x and t > 0; the solution is 
continuous for M ,< MO and discontinuous for .4f > MO, where hlo is the value 
of AI corresponding to the separatrix that goes through the origin of the 
coordinates. 

In Fig. 3 we have a representation of the field of the integral 
curves for the case 0 < n < y < 3. A study of this field shows that if 
the image of point 0 is iocated on the parabola (2.3) above the point of 
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Fig. 3. 

intersection of this parabola with the separatrix that goes through points 
.z= 0, YE- n and point A, the solution of Cauchy’s problem for all 
values of M exists, but it is not unique. Here for each value of M there 
is an infinite number of possible solutions which, however, will coincide 
for small values of X. If, however, the indicated points are distributed 
on the parabola (2.3) in an opposite order, then there exists a value of 
M= Mu such that, for M< Mu, the solution of Cauchy’s problem cannot be 
continued for all values of t > 0. For M > M, this continuation can be 
achieved in infinitely many ways, i.e. the solution is not unique. For 
M- M, the solution is continuous and unique. Both of these possibilities 
actually occur, since for y = 2 the equation of the separatrix that goes 
through the points 2 = 0, V = - R and A, is 2 = - [ 2n/(n - Z)] (V + n). 
Therefore we can find the coordinates of comparable points in explicit 
form, and thereby convince ourselves that by a proper choice of n we can 

realize both cases. 

We shall not stop to consider how the picture changes with a further 
increase in n. let us consider the case where n > 2y/fy - 11 (Fig.4). 
The asymptotic formula for V + 00 (4.1) shows that there exists a value 
of MO such that, for M > M the solution of Cauchy’s problem is con- 
tinuous, unique and determfied for all values of z and t > 0. Along with 
this it is obvious from Fig. 4 that for all M < MO the solution of 
Cauchy’s problem is not continuous for all values of t > 0. 

The case n > 0 and y > 3 is analogous. 

The final result can be formulated as follows. For n > 0 for any 
y > 1 the solution of Cauchy’s problem has the following possibilities: 

(a) It can be continuous for all t > 0 but not all values of M. Here, 
for those values of M, for which the solution is continuous for all times 
t > 0, continuity can be achieved either in a unique way for a given M, 
or in an infinite number of ways. 

(b) The solution is continuous for all values of M but here the con- 
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tinuity can be achieved in an infinite nwnber of ways for each value of M. 

Fig. 4 

Thus we can see that, for some initial conditions, a continuous solu- 
tion of Cauchy’s problem for the Kovaleskaya system of equations (1.1) 
either does not exist at all, inasmuch as an impassable limiting line 
appears in the x, t plane (of Ref. I: 7 I ), or else there exist infinitely 
many solutions for given initial conditions. 

This fact, of the loss of uniqueness in the solution of Cauchy’s problerr, 
for such systems with determined initial conditions,is worth taking note 
of, as to the best of the author’s knowledge it has not appeared in the 
literature up to now. 

Finally in the case n = m the equations can be integrated in terms of 
elementary functions and the solution can be written in the following 
form: 

u (5, t) = M If - Pot 

(+wP~ 

PO a 

p (2, t) = p. exp 
z-t -- 
p. .+;$q 

p(zt +=Poexp ; (Lqm+$A?.J 

(4.4) 

Analysis of the asymptotic behavior of the solution of the system 
(1.131, (1.14) and (X.15) with V + 00 shows that, in the cases where the 
solution to Cauchy’s problem exists and is determined for all n and 
t > 0, this solution at t + m has the form 

U (z, t) z C,(r)Vexp(-$-), p(z, t)=C,(s)Y~exp(-n;) 

p(z, t)=C,@)exp 
E 
-(n- 2,$], t = C1 (2) exp (G) 

-where a > 0, C are constants. From here it follows that for t + =, 

U-+0, p40 (n>O), p--+00 fn<% p-to (a> 21 

p-SC0 (n<V, RT=$+O 
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03 = gas constant, T = absolute temperature ). 

‘Ihe case of II = m in this relation is exceptional, because from 

formula (4.4) it follows that at t + m, u + 00; in this case R’T = RI’,, = 

pO/po (the motion is isothermal). Note that solution (4.4) does not 

contain y8 

2. Piston Problem. 

The problem of self-similar motion of gas that is created when the 

gas is displaced by a symmetrical piston is constructed as follows [S I. 

In a gas which is at rest and fills the whole space, and which has 

density pO and zero pressure, a sphere (cylinder or a flat layer in the 

cases of cylindrical or planar syrmaetry) is expanding according to the 

law rO = cP+l/(n + l), where rO is the radius of the piston, t = time, 
c and n = constants. What is to be determined is the motion created in 

the ideal non-conducting perfect gas. ‘lhis motion is described by some 

solution of system (1.1). It is self-similar, and the functions u, p, p 
have the form [ 5 1 : 

u(r,t)=fv(A), J7(rJ)=p&P().), p(‘,t)=p($(ii) 

&+I 
h=lky (p -= co11st) 

(5.1) 

lhe functions V (A), P (A) = 1-l R (A) 2 (A), R (A) are found in the ordi- 

nary equations (4), (5) and (6) of Ref. 15 I. 

Let us replace t byt + nrand let p = l/n, V= nV,, P- n2Pl, R-R,, 
c = (a/r )(nr Fn and go over to the limit n + - . In the result we will 

obtain for the motion of the piston the equation 

rO = aetlr (5.2) 

and from equation (5.1) the following equations (indices omitted) (5.3) 

U(T, t) = 5 v (All P b.9 0 = p& P(h), p (r, t) = p,R (A), L = 4 ,+I+ 

‘lhe differential equations then will become: 

dZ 

dV - 

z [2+v(y-l)]v(v-l)~-(y-l)v*(J7-l)-2~v-(Y--)/Yl~ (5 4) 
(V - 1) [V” (V - 1) - [2/y + VV] ZJ 

dlnh 
dV= 

(V-1)*-Z 
v2 (V - 1) - (2/Y + VV) 2 (5.5) 

(V-l$g = v2 (V ;&y-$ w z + .q 
(5.6) 
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Passage to the limit at the shock wave leads to the relations 

V2- 1 = (V, - 2 I) P + y+l 
21-_(V1--lY 

(V, - I)2 I , R =Al Ii*-1 
2 

“ifa- ____ (5.7) 

za = +$ ( J a&% [VI -1)2 + ++I [SI (V, - I)8 - &] 

In this case the characteristic parabolas corresponding to (2.2) and 

(2.3) are 
2 = (V - I)%, z=-+v-I)2 (5.3) 

The picture describing the possible transitions in the plane V, 2 
according to the relations (5.7) is identical to Fig. 1, if in the latter 

we substitute 1 in place of - n. 

To construct the solution of the problem, let us consider the field of 

integral curves of equation (5.4)) which is represented in Fig. 5. The 

arrows indicate the direction of the increase of the parsmeter X along 
the integral curves. 

Fig. 5. 

Evidently the solution of the problem should be discontinuous. The 
motion of the piston will create a strong shock wave which will propa- 

gate through the stationary gas and set it into motion. Corresponding to 

the state of rest (condition ahead of the shock wave) is the point 

Z = V = 0 in the V, 2 plane. Gxresponding to the state of gas behind 

the shock wave is the image of this point on the second of the parabolas 

(5.8) i.e. the point 

The solution of the problem is given by the integral curve 
the point (5.9) to the point Z = 0, V = 1. In the vicinity of 
point we have the following asymptotic representation: 

(5.9) 

going from 
the latter 

(5.10) 
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where Cl, C2, C3 are constants. 

Satisfying the initial conditions on the piston, we establish that 
here X = 1. This gives C2 = tvy f(2 + vy) I”*. Actual calculation of the 
solution of the problem can be by the method indicated in Ref. 15 1. 
Namely, coming from point (5.9) we construct by means of nwrical 
integration sn integral curve, which in the vicinity of point Z= 0, 
V= 1 joins with the first of the asymptotic eeations (5.101, and in 
this manner we can find the constant Cl. Further, we calculate the dis- 
tribution of A along the constructed integral curve by means of the 
second of formulae (5.101 and equation (5.5). Finally with the help of 
equation (5.6) and the condition at a strong shock wave R, = Cy + l)/ 
(y - 11, we calculate the distribution of R along the integral curve. 'Ihe 
joining of this distribution with the third of the asymptotic formulas 
(5.10) gives the constant C,. From this formula we can see that the 
density on the piston is equal to infinity, which is to he expected, as 
the solution constructed here is a limiting one for the regular similar- 
ity solutions with n + (10, and in Ref. [5 I it is indicated that for 
n > 0 the density on the piston is always equal to infinity. In the con- 
structed solution, as well as in the solutions of Ref. C5 1 for n > 0, 
the pressure on the piston is finite [ c,f. formulas (5.1011 and the 
temperature there is equal to zero. 

In conclusion I will take this opportunity to express my thanks to 
L.I. Sedov for a discussion of this work. 
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